Package: fibre (via r-universe)

November 1, 2024

Title Fast Evolutionary Trait Modelling on Phylogenies using Branch Regression Models

Version 0.0.0.9000

Description Implements Phylogenetic Branch Regression models which allow for flexible and versatile models of evolution along a phylogeny. The model can be used to detect shifts in rates of evolution along branches. The model uses a continuous and linear model structure and so can be easily combined with other non-phylogenetic statistical structures, as long as they are implemented using the R package INLA. One major uses of this are to condition on phylogeny in a standard regression between two traits, thus 'accounting' for phylogenetic structure in the response variable, similar to how pgls is used but allowing for a more flexible phylogenetic model. This also allows the phylogenetic model to be combined with the spatial models that INLA excels at (and with comparable flexibility to those spatial models).

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, bench, RPANDA, testthat (>= 3.0.0), INLA, tidytree, recipes, learnr, roxygen2, rgl, patchwork, rmarchingcubes, Rvcg, orientlib, Morpho, einsum, imager, movMF, furrr, ggridges, ggforce

VignetteBuilder knitr

Imports ape, dplyr, igraph, magrittr, fastmatch, MCMCglmm, phytools, phangorn, ivs, phyf (>= 0.0.0.9000), hardhat, rlang (>= 0.4.11), stats, vctrs, zeallot, torch, glue, Matrix, generics, ggplot2, glmnet, purrr, skimr, cli, tidyr, methods, utils

Config/testthat/edition 3

Depends R (>= 2.10)

2

```
Remotes rdinnager/phyf
```

URL https://rdinnager.github.io/fibre/

Additional_repositories https://inla.r-inla-download.org/R/stable

Repository https://rdinnager.r-universe.dev

RemoteUrl https://github.com/rdinnager/fibre

RemoteRef HEAD

RemoteSha f62fd4a6f0cc8d9492d909115582cb3ae21bbe18

Contents

bre	2
bre_brownian	3
bre_second_order	4
evo_autodecoder	5
fibre	5
get_aces	7
get_rates	8
get_tces	9
get_tips	9
load_model	10
predict.fibre	11
re 1	12
sdf_net	12
simulate_traits	13
tidy.fibre	14
1	16

Index

bre

Specify a branch length (random) effect

Description

This function is meant to be called only in the formula argument of fibre().

Usage

```
bre(
   phyf,
   rate_distribution = c("iid", "laplacian", "student-t", "horseshoe", "Brownian", "re"),
   hyper = list(prec = list(prior = "pc.prec", param = c(1, 0.1))),
   latent = 0,
   label = NULL,
   standardise = TRUE
)
```

bre_brownian

Arguments

phyf	A pfc column containing the phylogenetic structure
rate_distributi	on
	What distribution to use to model rates of evolution?
hyper	Hyper parameters as a list. Specify the prior distribution for engine = INLA models here. Default is a penalised complexity prior with 10% prior probability density greater than 1, which tend to work well for standardised Gaussian responses and Binomial responses.
latent	How many latent variables to generate in engine = INLA models. Default is none.
label	An optional label used to identify the random effect later The default is a label generated from the expression in phyf
standardise	Should the pfc object be standardised based on it's implied typical variance for terminal nodes? Default: TRUE. This helps random effects to be comparable to each other.

Value

A list of data to be used by the model.

bre_brownian	Specify a branch length	(random) effect for	a Brownian motion mode
--------------	-------------------------	---------------------	------------------------

Description

This function is meant to be called only in the formula argument of fibre().

Usage

```
bre_brownian(
   phyf,
   hyper = list(prec = list(prior = "pc.prec", param = c(1, 0.1))),
   latent = 0,
   label = NULL,
   standardise = TRUE
)
```

Arguments

phyf A pfc column containing the phylogenetic structure

hyper Hyper parameters as a list. Specify the prior distribution for engine = INLA models here. Default is a penalised complexity prior with 10% prior probability density greater than 1, which tend to work well for standardised Gaussian responses and Binomial responses.

latent	How many latent variables to generate in engine = INLA models. Default is
	none.
label	An optional label used to identify the random effect later The default is a label generated from the expression in phyf
standardise	Should the pfc object be standardised based on it's implied typical variance for terminal nodes? Default: TRUE. This helps random effects to be comparable to each other.

Value

A list of data to be used by the model.

<pre>bre_second_order</pre>	Specify a branch length (random) effect for a 'Second Order' Brown-
	ian motion model

Description

This function is meant to be called only in the formula argument of fibre().

Usage

```
bre_second_order(
   phyf,
   hyper = list(prec = list(prior = "pc.prec", param = c(1, 0.1))),
   latent = 0,
   label = NULL,
   standardise = TRUE
)
```

Arguments

phyf	A pfc column containing the phylogenetic structure
hyper	Hyper parameters as a list. Specify the prior distribution for engine = INLA models here. Default is a penalised complexity prior with 10% prior probabil- ity density greater than 1, which tend to work well for standardised Gaussian responses and Binomial responses.
latent	How many latent variables to generate in engine = INLA models. Default is none.
label	An optional label used to identify the random effect later The default is a label generated from the expression in phyf
standardise	Should the pfc object be standardised based on it's implied typical variance for terminal nodes? Default: TRUE. This helps random effects to be comparable to each other.

Value

A list of data to be used by the model.

evo_autodecoder

Description

Create a Evolutionary Autodecoder Model

Usage

```
evo_autodecoder(
   latent_dim,
   n_edges,
   decoder,
   reconstruction_loss,
   device,
   decoder_args = list(),
   loss_args = list()
)
```

Arguments

latent_dim	Number of latent dimensions
decoder	A torch::nn_model() specifying a 'decoder' network architecture. The de- coder network should accept a 2 dimensional torch::torch_tensor() with first d

Value

A torch::nn_module()

fibre

Fit a fibre

Description

fibre() fits a model.

Usage

```
fibre(x, ...)
## Default S3 method:
fibre(x, ...)
## S3 method for class 'data.frame'
```

```
fibre(
 х,
 у,
  intercept = TRUE,
 engine = c("inla", "glmnet", "torch"),
  engine_options = list(),
 ncores = NULL,
 verbose = 0,
  . . .
)
## S3 method for class 'matrix'
fibre(
 х,
 у,
  intercept = TRUE,
  engine = c("inla", "glmnet", "torch"),
  engine_options = list(),
 ncores = NULL,
  verbose = 0,
  . . .
)
## S3 method for class 'formula'
fibre(
  formula,
  data,
  intercept = TRUE,
  family = "gaussian",
 engine = c("inla", "glmnet", "torch"),
  engine_options = list(),
  ncores = NULL,
  verbose = 0,
  . . .
)
## S3 method for class 'recipe'
fibre(
 х,
 data,
  intercept = TRUE,
 engine = c("inla", "glmnet", "torch"),
  engine_options = list(),
 ncores = NULL,
 verbose = 0,
  . . .
)
```

6

get_aces

Arguments

х	Depending on the context:
	• A data frame of predictors.
	• A matrix of predictors.
	• A recipe specifying a set of preprocessing steps created from recipes::recipe().
	Not currently used, but required for extensibility.
У	When x is a data frame or matrix , y is the outcome specified as:
	• A data frame with 1 numeric column.
	• A matrix with 1 numeric column.
	• A numeric vector.
formula	A formula specifying the outcome terms on the left-hand side, and the predictor terms on the right-hand side.
data	When a recipe or formula is used, data is specified as:
	• A data frame containing both the predictors and the outcome.

Value

A fibre object.

Examples

```
predictors <- mtcars[, -1]
outcome <- mtcars[, 1]
# XY interface
#mod <- fibre(predictors, outcome)
# Formula interface
#mod2 <- fibre(mpg ~ ., mtcars)
# Recipes interface
#library(recipes)
#rec <- recipe(mpg ~ ., mtcars)
#rec <- step_log(rec, disp)
#mod3 <- fibre(rec, mtcars)</pre>
```

get_aces

Title

Description

Title

Usage

```
get_aces(
    x,
    type = c("marginals", "samples", "mode", "mean", "median", "lower", "upper", "ci",
        "hpd", "sd"),
    n = 1,
    p = 0.05
)
```

Arguments

х	A fitted model object produced by fibrer
type	What kind of posterior summary to return?
n	If type = "samples", how many samples to return?
р	If type = "hpd", what alpha levels to use?

Value

For all types except "hpd", "ci", and "marginals", a numeric vector, otherwise a list for "hpd" and "marginals", and a matrix for "ci".

get_rates	Title			
-----------	-------	--	--	--

Description

Title

Usage

```
get_rates(
    x,
    type = c("marginals", "samples", "mode", "mean", "median", "lower", "upper", "ci",
        "hpd", "sd"),
    n = 1,
    p = 0.05
)
```

Arguments

х	A fitted model object produced by fibrer
type	What kind of posterior summary to return?
n	If type = "samples", how many samples to return?
р	If type = "hpd", what alpha levels to use?

8

get_tces

Value

For all types except "hpd", "ci", and "marginals", a numeric vector, otherwise a list for "hpd" and "marginals", and a matrix for "ci".

get_tces

Description

Title

Usage

```
get_tces(
    x,
    type = c("marginals", "samples", "mode", "mean", "median", "lower", "upper", "ci",
        "hpd", "sd"),
    n = 1,
    p = 0.05
)
```

Arguments

х	A fitted model object produced by fibrer
type	What kind of posterior summary to return?
n	If type = "samples", how many samples to return?
р	If type = "hpd", what alpha levels to use?

Title

Value

For all types except "hpd", "ci", and "marginals", a numeric vector, otherwise a list for "hpd" and "marginals", and a matrix for "ci".

get_tips	Title	

Description

Title

Usage

```
get_tips(
    x,
    type = c("marginals", "samples", "mode", "mean", "median", "lower", "upper", "ci",
        "hpd", "sd"),
    n = 1,
    p = 0.05
)
```

Arguments

х	A fitted model object produced by fibrer
type	What kind of posterior summary to return?
n	If type = "samples", how many samples to return?
р	If type = "hpd", what alpha levels to use?

Value

For all types except "hpd", "ci", and "marginals", a numeric vector, otherwise a list for "hpd" and "marginals", and a matrix for "ci".

load_model	Load a model

Description

Load a model

Usage

load_model(name)

Arguments

name

Name of the model. Currently only "bird_beak".

Value

A torch::nn_module() with pre-trained weights

Examples

```
if(torch::torch_is_installed()) {
model <- load_model("bird_beaks")
}</pre>
```

10

predict.fibre *Predict from a* fibre

Description

Predict from a fibre

Usage

```
## S3 method for class 'fibre'
predict(object, new_data = NULL, type = "numeric", ...)
```

Arguments

object	A fibre object.
new_data	A data frame or matrix of new predictors.
type	A single character. The type of predictions to generate. Valid options are:
	• "numeric" for numeric predictions.
	Not used, but required for extensibility.

Value

A tibble of predictions. The number of rows in the tibble is guaranteed to be the same as the number of rows in new_data.

Examples

```
train <- mtcars[1:20,]
test <- mtcars[21:32, -1]
# Fit
#mod <- fibre(mpg ~ cyl + log(drat), train)
# Predict, with preprocessing
#predict(mod, test)</pre>
```

Description

This function is meant to be called only in the formula argument of fibre().

Usage

```
re(
  groups,
  hyper = list(prec = list(prior = "pc.prec", param = c(1, 0.1))),
  label = NULL,
  standardise = TRUE
)
```

Arguments

groups	A character or factor column containing the grouping variable for the random effect
hyper	Hyper parameters as a list. Specify the prior distribution for engine = INLA models here. Default is a penalised complexity prior with 10% prior probability density greater than 1, which tend to work well for standardised Gaussian responses and Binomial responses.
label	An optional label used to identify the random effect later The default is a label generated from the expression in phyf
standardise	Should the pfc object be standardised based on it's implied typical variance for terminal nodes? Default: TRUE. This helps random effects to be comparable to each other.

Value

A list of data to be used by the model.

sdf_net	A signed distance field based neural network model for generating 3d
	shapes

Description

A signed distance field based neural network model for generating 3d shapes

Usage

sdf_net(n_latent = 64, breadth = 512)

re

simulate_traits

Arguments

n_latent	Number of dimensions for the latent space
breadth	Breadth of the multilayer perceptron networks

Value

A torch::nn_module()

Examples

```
if(torch::torch_is_installed()) {
  sdf_net()
}
```

simulate_traits	Function to s	simulate	continuous	trait valu	e histories	on a	phylo	geny.
-----------------	---------------	----------	------------	------------	-------------	------	-------	-------

Description

Function to simulate continuous trait value histories on a phylogeny.

Usage

```
simulate_traits(
   phy,
   rate_model = c("continuous", "discrete"),
   temp_trend_rates = 0,
   rate_change,
   rates = NULL,
   anc = c(`1` = 0),
   internal = FALSE,
   nsim = 1,
   pos_strat = c("none", "log", "add_const"),
   temp_trend_mean = 0
)
```

Arguments

phy	A phylogenetic tree (phylo object) on which to simulate traits
rate_model	The type of rate model for how rates of evolution evolve on the phylogeny: "continuous" for continuous Brownian motion evolution of rates, or "discrete" for evolution of rate "classes" across the phylogeny, using an mk model.
temp_trend_rate	es
	What temporal trend in rates should there be? A positive number for an increase, and negative number for a decrease with the magnitude controlling the strength of linear change. This trend is added to rates simulated under the rate_model.

rate_change	If rate_model is "continuous", this should be a single positive number control- ling how fast rates change continuously along the tree. If rate_model is "dis- grate", this should be a transition matrix for the rate classes. On if note, model
	is "discrete", and this can be a length 2 numeric vector specifying
rates	Only used if rate_model is "discrete", in which case this should be a named vector whose values are the rates in each rate class, and whose names are the rate class states (e.g. $c("1" = 3, "2" = 10)$). See sim.history, for more detail on how the discrete model works. Or, if an unnamed numeric vector of length two, a mean and standard deviation parameterizing a normal distribution from which to draw rates for each rate class. If NULL, rates will be drawn from a normals distribution with mean = 0 and sd = 1.
anc	Value of the trait at the root ancestor. For rate_model = "discrete", can be a length 1 named vector where the name is the ancestral state, and the value is the trait starting value. For rate_model = "continuous", any names are ignored, but should be length 2, where the first element is the ancestral trait value and the second element is the ancestral rate of evolution.
internal	Logical value. If TRUE return trait states at internal nodes.
nsim	Number of simulation to run.
pos_strat	?
<pre>temp_trend_mean</pre>	
	A temporal trend in rates.

Value

A vector or matrix (for nsim > 1) containing simulated trait values for each tip if internal = FALSE, or for each node if internal = TRUE

tidy.fibre

Tidy Model Results

Description

Tidy Model Results

Usage

```
## S3 method for class 'fibre'
tidy(
    x,
    effects = c("fixed", "rates", "random", "hyper"),
    conf.type = c("cred.int", "marginals"),
    indexes = NULL,
    ...
)
```

tidy.fibre

Arguments

x	A fibre model object
effects	Which effects do you want tidied? One of: "fixed", for fixed effects, "random" for random effects, or "hyper" for the hyper-parameters of the random effects.Can also be "rates", which is a synonym for "random", since the random effects are rates of trait evolution along phylogenetic edges.
conf.type	What kind of confidence interval. Choices are: "cred.int" for approximate Bayesian marginal credible intervals. or "marginals" for the full approxi- mate marginal distributions, as a data.frame with value and y.value columns. value is the value of the parameter, and y.value is the marginal posterior den- sity (e.g. what value is the x axis and y.value is the y axis when plotting the posterior density).
indexes	If effects = "random" or effects = "rates", this is a vector of indices to re- trieve particular random effects. Default is to return all random effects, however, this can be slow for retrieving the marginals.
	Not used.

Value

A tidy tibble with information about the fitted model parameters.

Index

bre, 2bre_brownian, 3 bre_second_order, 4 $\texttt{evo_autodecoder, 5}$ fibre,5 fibrer, <u>8-10</u> get_aces, 7 get_rates, 8 get_tces, 9 get_tips, 9 load_model, 10 predict.fibre,11 re, 12 recipes::recipe(), 7 ${\tt sdf_net,\, 12}$ sim.history, 14 simulate_traits, 13 tidy.fibre, 14