Package: fibre 0.0.0.9000
fibre: Fast Evolutionary Trait Modelling on Phylogenies using Branch Regression Models
Implements Phylogenetic Branch Regression models which allow for flexible and versatile models of evolution along a phylogeny. The model can be used to detect shifts in rates of evolution along branches. The model uses a continuous and linear model structure and so can be easily combined with other non-phylogenetic statistical structures, as long as they are implemented using the R package INLA. One major uses of this are to condition on phylogeny in a standard regression between two traits, thus 'accounting' for phylogenetic structure in the response variable, similar to how pgls is used but allowing for a more flexible phylogenetic model. This also allows the phylogenetic model to be combined with the spatial models that INLA excels at (and with comparable flexibility to those spatial models).
Authors:
fibre_0.0.0.9000.tar.gz
fibre_0.0.0.9000.zip(r-4.5)fibre_0.0.0.9000.zip(r-4.4)fibre_0.0.0.9000.zip(r-4.3)
fibre_0.0.0.9000.tgz(r-4.4-any)fibre_0.0.0.9000.tgz(r-4.3-any)
fibre_0.0.0.9000.tar.gz(r-4.5-noble)fibre_0.0.0.9000.tar.gz(r-4.4-noble)
fibre_0.0.0.9000.tgz(r-4.4-emscripten)fibre_0.0.0.9000.tgz(r-4.3-emscripten)
fibre.pdf |fibre.html✨
fibre/json (API)
# Install 'fibre' in R: |
install.packages('fibre', repos = c('https://rdinnager.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/rdinnager/fibre/issues
Pkgdown site:https://rdinnager.github.io
Last updated 1 months agofrom:069e04c036. Checks:1 ERROR, 6 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | FAIL | Jan 09 2025 |
R-4.5-win | WARNING | Jan 09 2025 |
R-4.5-linux | WARNING | Jan 09 2025 |
R-4.4-win | WARNING | Jan 09 2025 |
R-4.4-mac | WARNING | Jan 09 2025 |
R-4.3-win | WARNING | Jan 09 2025 |
R-4.3-mac | WARNING | Jan 09 2025 |
Exports::=.data%>%as_labelas_nameaugmentautoplotbrebre_brownianbre_second_orderdefault_cameradefault_lightenquoenquosevo_autodecoderfibrefibre_formula_blueprintget_acesget_camera_positionget_ratesget_tcesget_tipsglanceload_bird_beak_modelload_modelresdf_netsimulate_traitstidy
Dependencies:apeaplotassertthatbase64encbitbit64callrclassclassIntcliclusterGenerationcodacodetoolscolorspacecombinatcorocorpcorcpp11cubatureDBIDEoptimdescdigestdoParalleldplyre1071ellipsisevaluateexpmfansifarverfastmapfastmatchfmesherforeachfsgenericsggfunggplot2ggplotifyggtreeglmnetgluegridGraphicsgtablehardhathighrhtmltoolsigraphinlabruisobanditeratorsivsjsonliteKernSmoothknitrlabelinglatticelazyevallifecyclemagrittrmapsMASSMatrixMatrixModelsMCMCglmmmgcvmnormtmunsellnlmenumDerivoptimParallelpatchworkphangornphyfphytoolspillarpkgconfigplyrprocessxproxypspurrrquadprogR6RColorBrewerRcppRcppEigenreprrlangs2safetensorsscalesscatterplot3dsfshapeskimrstringistringrsurvivaltensorAtibbletidyrtidyselecttidytreetorchtreeiounitsutf8vctrsviridisLitewithrwkxfunyamlyulab.utilszeallot
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Specify a branch length (random) effect | bre |
Specify a branch length (random) effect for a Brownian motion model | bre_brownian |
Specify a branch length (random) effect for a 'Second Order' Brownian motion model | bre_second_order |
Create a Evolutionary Autodecoder Model | evo_autodecoder |
Fit a 'fibre' | fibre fibre.data.frame fibre.default fibre.formula fibre.matrix fibre.recipe |
Title | get_aces |
Title | get_rates |
Title | get_tces |
Title | get_tips |
Load a model | load_model |
Predict from a 'fibre' | predict.fibre |
Specify a random effect | re |
A signed distance field based neural network model for generating 3d shapes | sdf_net |
Function to simulate continuous trait value histories on a phylogeny. | simulate_traits |
Tidy Model Results | tidy.fibre |